Synthesis, structures and properties of bis(carbodiimido) complexes of $Ni(II)$, $Pd(II)$ and $Pt(II)$

FULL PAPER

Yong-Joo Kim,**^a* **Young-Seon Joo,***^a* **Jin-Taek Han,***^a* **Won Seok Han***^b* **and Soon W. Lee** *^b*

^a Department of Chemistry, Kangnung National University, Kangnung 210-702, Korea. E-mail: yjkim@knusun.kangnung.ac.kr

^b Department of Chemistry, Sungkyunkwan University, Natural Science Campus, Suwon 440-746, Korea

Received 30th April 2002, Accepted 8th July 2002 First published as an Advance Article on the web 12th August 2002

Bis(azido)–Group 10 metal complexes $(M(N_3)_2L_2)$ reacted with two equivalents of isocyanides (CNR) to give the corresponding bis(carbodiimido) complexes, $M(N=C=N-R)_{2}L_{2}$ { $Pd(N=C=N-2,6-Me_{2}C_{6}H_{3})_{2}L_{2}$]: L = PMe_{3} (1), PEt_{3} (2), PMe₂Ph (3); [Pd(N=C=N-2,6-Et₂C₆H₃)₂L₂]: L = PMe₃ (4); [Ni(N=C=N-2,6-Me₂C₆H₃)₂L₂]: L = PMe₃ (5), PEt₃ (6); $[Pt(N=C=N-2,6-Me,C₆H₃)$, L₂]: L = PMe₃ (7), PEt₃ (8)} in relatively high yields. Reaction schemes have been proposed on the basis of isolated intermediates such as Ni $[CN_4(R)](N=C=N-R)(PMe_3)_2(R=2,6-Me_2C_6H_3)$ (9), *trans*-Pt[CN₄(R)]₂- $(PMe_3)_2$ (10), and $Pt[CN_4(R)](N=C=N-R)L_2$ ($L = PMe_3$ (11) or PEt_3 , (12)). Molecular structures of 1, 2, 4, 6, 8, and **11** have been determined by X-ray diffraction, demonstrating that the nitrogen of the carbodiimido ($N=C=N$) group is directly bonded to the metal center. The chelating phosphine analogues $M(N_3)$ ₂(L–L) {M = Pd or Ni; L–L = depe (1,2-bis(diethylphosphino)ethane), dppp (1,3-bis(diphenylphosphino)propane), or dppe (1,2-bis(diphenylphosphino) ethane)} reacted with isocyanides to also give the corresponding bis(carbodiimido) complexes, $M(N=C=N-R)$ ₂- $(L-L)$ {M = Pd: L–L = depe (13), dppp (14); M = Ni, L–L = dppe (15)} in high yields. Treating Pd(N=C=N–2,6-Me**2**C**6**H**3**)**2**(PMe**3**)**2** (**1**) with two equivalents of benzoyl chloride (PhCOCl), phenyl chloroformate (PhOCOCl), and 2-thiophenecarbonyl chloride (C₄H₃SCOCl) gave organic cyanamides, PhCON(CN)-2,6-Me₂C₆H₃, PhO(CO)N(CN)-2,6-Me₂C₆H₃, and C₄H₃SCON(CN)-2,6-Me₂C₆H₃, respectively.

Introduction

Transition-metal complexes containing a carbodiimido (or bis(carbodiimido)) ligand, in which the nitrogen of a linear $N=C=N$ fragment is directly bonded to the metal, have received a great deal of attention due to their potential applications as catalysts for polymerization, precursors for metal nitrides and metal carbonitrides, or intermediates for organic cyanamides.**1,2**

Early transition-metal or main-group complexes of the η**1** -carbodiimido ligand are generally prepared by the transmetallation of metal halides with trialkylstannyl (or trialkylsilyl)carbodiimides.**1,3** Earlier work by Beck and co-workers revealed the existence of carbodiimido species based on spectral data of the thermolysis of $\text{AsPh}_4[\text{Au}(\text{CN}_4\text{CH}_2\text{C}_6\text{H}_3)]$.⁴ Lewis and co-workers reported a unique method of preparing an end-on carbodiimido complex $[Os₃(CO)₁₀{Au(PEt₃)}$ - $(NCNPh)$] from $[Os₃(CO)₁₀{Au(PEt₃)}(NCO)]$ and PhNPPh₃.⁵ Fisher's group also prepared an η ¹-carbodiimido complex by treating an isocyanide complex [(CO)**5**Cr(CNEt**2**)][BF**4**] with $[N(C_4H_9)_4]N_3$ ⁶ Crutchley and co-workers reported several complexes of late transition metals such as Ni, Pd, Ru, and Cu containing a carbodiimido or bis(carbodiimido) ligand, which were prepared by metathesis reactions using thallium cyanamide derivatives.**⁷** Also, Robson and co-workers reported carbodiimido-bridged complexes of $Ni(II)$ and $Cu(II)$ from anionic cyanamide derivatives.**⁸** In addition, Fehlhammer and co-workers observed the existence of the carbodiimido group on the thermal treatment of $[RhCp^*(\mu-N_3)(N_3)]_2$ with ${}^tBuNC.^9$ Although many studies of late transition-metal carbodiimides have been reported, chemical properties of Group 10 metal– carbodiimido complexes remain relatively unexplored. These complexes might be useful as potential intermediates or precursors in transition metal-catalyzed organic reactions.

We have very recently reported the reactions of mono- or bis- (azido) $Pd(II)$ complexes with organic isocyanides to give novel $Pd(II)$ complexes, which contain either a carbodiimido ligand (mono or bis) with an end-on $N=C=N$ fragment or a C-bonded, 5-membered tetrazolato ligand, depending upon the reaction conditions.**¹⁰** These results prompted us to extend our synthetic scope to other Group 10 metal–carbodiimido complexes. Here we report a series of new bis(carbodiimido) $Ni(II)$, $Pd(II)$, and $Pt(II)$ complexes, prepared by treating the corresponding bis(azido) complexes with isocyanides, along with their reactivity and structures.

Results and discussion

Preparations

Our recent paper revealed that the reactions of bis(azido)– $Pd(\Pi)$ complexes of the type $Pd(N_3), L_2$ ($L = PMe_3$ or PEt_3) with 2,6-dimethylphenyl isocyanide (CNR: $R = 2.6$ -Me₂C₆H₃) gave $Pd[CN₄(R)](N=C=N-R)L$ ₂ containing both an end-on carbodiimido and a C-bonded tetrazolato ring, and these complexes transformed into the bis(carbodiimido)– $Pd(II)$ complexes, $Pd(N=C=N-R)_{2}L_{2}$ (L = PMe_{3} , (1); $PEt_{3}(2)$) by thermal activation.**¹⁰** On the basis of these results, we decided to employ the same synthetic strategy to prepare a complete set of bis(carbodiimido) complexes of a Group 10 triad of the type $M(N=C=$ $N-R$ ₂, using bis(azido)–metal–phosphine complexes and isocyanides (eqn. (1)). The specifical control of the discussion of the discussion of the discussion of the design of the specific N, B, and $\frac{1}{4}$, 6, 8, and $\frac{1}{4}$, 6, 8, and $\frac{1}{4}$, 6, 8, and $\frac{1}{2}$ –N($\frac{1}{2}$, 4, 6, 8, and $\frac{1}{$

Bis(carbodiimido)–Group 10 metal complexes **3**–**8** were isolated in 45–83% yield and have been characterized by spectroscopy and elemental analysis (see Tables 1 and 2). The bis(carbodiimido) complex formation can be readily monitored by IR spectroscopy, which shows the disappearance of an asymmetric stretching band $v(N_3)$ at about 2030 cm⁻¹ present in the starting compound and the appearance of a new strong band in the range of 2098–2179 cm^{-1} due to the carbodiimido group $(N=C=N)$ of the product. ¹H and ¹³C NMR spectra

DOI: 10.1039/b204179k *J. Chem. Soc*., *Dalton Trans*., 2002, 3611–3618 **3611**

 $a \text{ R}$ is 2,6-Me₂C₆H₃, unless otherwise stated. *b* Calculated values are given in parentheses.

display a singlet due to the symmetric methyl groups of the 2,6-dimethylphenyl or 2,6-diethylphenyl group attached to the carbodiimido (N=C=N) group, suggesting a symmetric *trans* or *cis* structure of the carbodiimido complexes. **³¹**P NMR spectra of the complexes also support the proposed structures. The coordination geometry of these complexes, *trans* or *cis*, appears to be associated with the auxiliary ligands. For instance, PMe₃– bis(carbodiimido) complexes are observed to have a *cis* form both in solution and in the solid state. In contrast, the PEt₃ analogues appear to have only a *trans* form. Interestingly, complex **4** is observed as a mixture of *trans* and *cis* isomers of Pd(N=C=N-2,6-Me₂C₆H₃)₂(PMe₂Ph)₂ by spectroscopic analysis. Although we cannot give a clear-cut explanation for the existence of these isomers, the steric properties of PMe**2**Ph compared with PMe₃ or PEt₃ might be operational in the formation of the isomers.

As shown in eqn. (1), the bis(azido)– $Pd(II)$ - and Ni(II)complexes at 60 $^{\circ}$ C for 5 h undergo reactions to give the bis(carbodiimido) species, with no other possible products such as mono(tetrazolato) or bis(tetrazolato) complexes arising from the C-coordinated tetrazolato formation by the 1,3-dipolar cycloaddition of the isocyanide to the azido ligand. These reactions seem to involve the initial formation of the C-coordinated bis(tetrazolato) complex, $M[CN_4(R)]_2L_2$. One of the tetrazolato rings then transforms to an end-on NCN–R fragment with the elimination of N_2 to give the intermediate $M[CN_4(R)](N=C=N-$ R)L**2**, which contains a tetrazolato ring and a carbodiimido ligand. Finally, the subsequent N_2 elimination occurs on a second tetrazolato ring to give the bis(carbodiimido) complex (Scheme 1). In a previous paper,**¹⁰** we have shown the formation of the intermediates $Pd(CN_4(R))(N=C=N-R)L_2$ (R = 2,6- $Me₂C₆H₃$; L = PMe₃ or PEt₃) and their conversion to the bis-(carbodiimido) complexes. In this work, we have also isolated the nickel intermediate, $Ni[CN_4(R)](N=C=N-2,6-Me_2C_6H_3)$ - $(PMe₃)₂$ (9) and its conversion at 60 °C to the bis(carbodiimido) complex, $Ni(N=C=N-R)_{2}(PMe_{3})_{2}$ (5) in 96% yield. These results support the proposed reaction scheme that proceeds *via*

Scheme 1

the intermediate $M[CN_4(R)](N=C=N-R)L_2$. Interestingly, those reactions below 50 $^{\circ}$ C give a mixture of the two species, $M[CN_4(R)](N=C=N-R)L_2$ and $M(N=C=N-R)_2L_2$. Therefore, we conclude that the reaction at 60 $^{\circ}$ C is suitable for the preparation of bis(carbodiimido) complexes.

Reactions of bis(azido)–platinum(II) complexes with 2,6dimethylphenyl isocyanide proceed *via* a similar reaction scheme as shown in Scheme 2. However, the reaction scheme

shows that platinum tetrazolato intermediates appear to be thermally more stable than the nickel and palladium ones, which has been proposed on the basis of the isolated compounds **7**, **8**, and **10–12**. Reaction of $Pt(N_3)_2 (PMe_3)_2$ with 2 equiv. 2,6-dimethylphenyl isocyanide at room temperature gives a bis(tetrazolato) complex, *trans*-Pt[$CN_4(2,6\text{-}Me_2C_6H_3)$]₂-(PMe₃)₂ (10), and the subsequent thermal activation at 60 °C for 5 h transforms it into $Pt[CN_4(R)](N=C=N-R)(PMe_3)_2$ (11), which contains both a tetrazolato ring and a carbodiimido ligand. Direct reactions of $Pt(N_3)_2L_2$ (L = PMe_3 or PEt_3) with 2,6-dimethylphenyl isocyanide at 60 \degree C for 5 h also produce the same complexes, $Pt[CN_4(R)](N=C=N-R)L_2$ {(L = PMe₃(11), PEt₃(12)) in high yields. A further thermal treatment (stirring) at 80 °C for 24 h leads to the conversion of $Pt[CN_4(R)](N=C=$ N–R)L**2** into the ultimate bis(carbodiimido) complexes, *trans*or *cis*-Pt(N=C=N-R)₂L₂ (compounds 7 and 8). Direct reactions of $Pt(N_3)_2L_2$ (L = PMe₃ or PEt₃) with 2,6-dimethylphenyl

^a Obtained in CDCl**3** at 25 C. Peak positions were referenced to internal SiMe**4**. *^b* Obtained in CDCl**3** at 25 C. Peak positions were referenced to internal SiMe**4**. *^c* Obtained in CDCl**3** at 25 C. Peak positions were referenced to external 85% H**3**PO**4**. Abbreviations: t, triplet; br, broad; brs, broad singlet; q, quartet; m, multiplet. *^d* KBr. *^e* Spectral data for **13** were obtained in DMSO at 25 C.

isocyanide at 80 $^{\circ}$ C for 24 h also produce the same bis(carbodiimido) complexes. In contrast, the analogous reactions with alkyl isocyanides (*tert*-butyl and cyclohexyl isocyanides) do not produce any desired mono(carbodiimido) or bis(carbodiimido) complexes and give only bis(tetrazolato)-platinum(II) complexes.**¹⁰** These results suggest that the steric bulk of 2,6 dimethylphenyl on the tetrazolato ring might exert an influence facilitating N_2 elimination from the tetrazolato ring forcing the formation of the carbodiimido group.

We have also prepared bis(carbodiimido) complexes possessing chelating phosphine ligands (eqn. (2)). Treating bis- (azido)–nickel(I) and –palladium(I) complexes, which contain chelating phosphine ligands {depe (1,2-bis(diethylphosphino) ethane), dppp (1,3-bis(diphenylphosphino)propane), or dppe

R is 2,6-Me₂C₆H₃, unless otherwise stated. L = 1,3-bis(2'-pyridylimino)isoindolinato; 2-Clpcyd = 2-chlorophenylcyanamido; terpy = terpyridine; ocn = *o*-nitrophenylcyanamido-*N*.

(1,2-bis(diphenylphosphino)ethane)}, with 2,6-dimethylphenyl isocyanide at 60 \degree C for 5 h produces the corresponding bis-(carbodiimido) complexes in high yields. These reactions proceed even at room temperature but require longer reaction times. Complexes **13**–**15** are less soluble in common organic solvents and display poorer crystallinity, compared with the monodentate tertiary phosphine analogues.

$$
\begin{array}{ll}\n\binom{L}{M} & 12 \text{ CNR} \\
\downarrow \text{M} & 12 \text{ CNR} \\
\downarrow \text{M} & N = \text{C=N-R} \\
\downarrow \text{M} & N = \text{C=N-R} \\
\downarrow \text{N} & N = \text{C-N-R} \\
\downarrow \text{N} & N = \text{N} \\
\downarrow \text{N} & N
$$

Structures

Molecular structures of **1**, **2**, **4**, **6**, **8** and **11** have been determined by X-ray diffraction. Bonding parameters for the terminal η**¹** -carbodiimido ligand of Group 10 metal complexes containing a carbodiimido or bis(carbodiimido) ligand as well as bis(carbodiimido) complexes of other transition metals are summarized in Table 3. The crystal data and intensity data are given in Table 4. Figs. 1 and 2 show the ORTEP drawings of complexes **1** and **4**, which have a slightly distorted squareplanar coordination, containing two *cis* phosphines and two *cis* carbodiimido groups. These ORTEP drawings clearly show that the nitrogen atom of the carbodiimido ligand $(N=C=N)$ is bonded to the Pd center. As shown in Table 3, the Pd–N distances (2.080(6) and 2.089(6) Å for **1**; 2.087(5) and 2.089(5) Å for **4**) of the carbodiimido ligand in both compounds are very close to that $(2.087(3)$ Å) found in *trans*-PdPh(N=C=N-2,6- $Me₂C₆H₃$)(PMe₃)₂.¹¹ However, these bonds are somewhat longer than those (2.030(5) and 1.988(8) Å) found in the carbodiimido complexes, *trans*-Pd[CN₄(R)](N=C=N–R)L₂ (R = 2,6- $Me₂C₆H₃$; L = PMe₃ or PMe₂Ph),¹⁰ suggesting a stronger *trans* influence of PMe₃ compared with the tetrazolato ring (CN₄(R)). The proximal nitrogen–carbon bond (N_a=C) distances are observed to range from $1.144(9)$ – $1.191(6)$ Å and are very close to the C \equiv N bond distance (1.16 Å).¹³ On the other hand, the distal nitrogen–carbon bond distances $(C=N_8)$ are in the range of $1.23(1)$ –1.297(9) Å, indicating some double bond

Fig. 1 ORTEP drawing **²⁶** of **1** showing the atom-labeling scheme and 50% probability thermal ellipsoids. Selected bond lengths (Å) and angles (°): Pd1–P1 2.256(2), Pd1–P2 2.269(2), N2–C8 1.438(10), N4–C17 1.425(11); N1–Pd1–N3 88.2(2), N1–Pd1–P1 86.4(2), N3–Pd1– P1 174.6(2), N1–Pd1–P2 172.8(2), N3–Pd1–P2 90.4(2), P1–Pd1–P2 94.97(7), C7–N1–Pd1 136.9(6), C7–N2–C8 124.3(7), C16–N3–Pd1 138.1(6), C16–N4–C17 126.6(7).

Fig. 2 ORTEP drawing of 4. Selected bond lengths (A) and angles $(°)$: Pd1–P1 2.257(2), Pd1–P2 2.268(2), N2–C8 1.435(8), N4–C19 1.426(9); N1–Pd1–N3 88.6(2), N1–Pd1–P1 86.5(2), N3–Pd1–P1 175.0(2), N1–Pd1–P2 173.4(2), N3–Pd1–P2 89.6(2), P1–Pd1–P2 95.37(7), C7–N1–Pd1 135.0(5), C7–N2–C8 126.4(6), C18–N3–Pd1 135.4(5), C18–N4–C19 126.4(6).

Table 4 X-Ray data collection and structure refinement for **1**, **2**, **4**, **6**, **8** and **11**

		2	4	6	8	11
Formula	$C_{24}H_{36}N_{4}P_{2}Pd$	$C_{30}H_{48}N_4P_2Pd$	$C_{28}H_{44}N_{4}P_{2}Pd$	$C_{30}H_{48}N_4P_2Ni$	$C_{30}H_{48}N_4P_2Pt$	$C_{24}H_{36}N_6P_2Pt$
\boldsymbol{M}	548.91	633.06	605.01	585.37	721.75	665.62
T/K	295(2)	295(2)	296(2)	296(2)	295(2)	293(2)
Crystal system	Monoclinic	Orthorhombic	Monoclinic	Orthorhombic	Orthorhombic	Monoclinic
Space group	P2 ₁ /c	Pbca	P2 ₁ /c	Pbca	Pbca	$P2_1$
a/Å	12.790(3)	9.525(4)	12.191(2)	9.385(2)	9.455(1)	9.066(2)
b/Å	13.920(3)	14.396(5)	16.580(4)	14.465(2)	14.344(2)	11.766(2)
$c/\text{\AA}$	17.037(3)	24.183(8)	16.660(5)	24.050(3)	24.230(2)	13.601(3)
	110.279(6)		109.93(2)			108.92(2)
	2845(1)	3316(2)	3166(1)	3264.7(9)	3286.0(5)	1373.8(5)
$\frac{\beta l^{\circ}}{V/\AA^{3}}$ Z	4	4	4	4	4	2
D_{calc} /g cm ⁻³	1.281	1.268	1.269	1.191	1.459	1.609
μ /mm $^{-1}$	0.781	0.680	0.709	0.716	4.391	5.246
F(000)	1136	1328	1264	1265	1456	660
No. of refins Measured	5154	2922	5765	2862	2839	2702
No. of refins Unique	4920	2922	5490	2862	2839	2538
No. of reflns with $I > 2\sigma(I)$	3841	1514	3711	1609	1750	2352
No. of params Refined	200	170	278	170	170	299
$\Delta \rho$ max, min/e \AA^{-3}	$1.043 - 0.544$	$0.307, -0.338$	$0.858, -0.466$	$0.345, -0.273$	$0.791, -0.986$	$0.466, -0.413$
GOF on F^2	1.029	0.990	1.006	1.001	1.045	1.046
\boldsymbol{R}	0.0669	0.0464	0.0559	0.0543	0.0357	0.0238
wR_2^a	0.1776	0.0921	0.1371	0.1198	0.0897	0.0547
R (all data)	0.0835	0.1180	0.0906	0.1170	0.0609	0.0283
wR_2^a (all data)	0.1937	0.1179	0.1596	0.1469	0.1088	0.0566
^a $wR_2 = \sum [w(F_0^2 - F_c^2)^2]/\sum [w(F_0^2)^2]^1$.						

character. These asymmetric NCN linkages are common for cabodiimido complexes as shown in Table 3.

The molecular structures of complexes **2**, **6**, and **8** are shown in Figs. 3–5 and provide the first examples of bis(carbodiimido) complexes of a Group 10 triad of the type $trans-M(N=C=$

Fig. 3 ORTEP drawing of **2**. Symmetry equivalent atoms (denoted by an A) are generated by the crystallographic inversion center located at the Pd1 atom. Selected bond lengths (A) and angles $(°)$: Pd1–P1 2.328(2), N2–C8 1.406(7); N1–Pd1–P1 87.8(1), N1A–Pd1–P1 92.2(1), N1–Pd1–P1A 92.2(1), N1–Pd1–N1A 180.0(3), N1A–Pd1–P1A 87.8(1), P1–Pd1–P1A 180.00(8), C7–N1–Pd1 136.8(4), C7–N2–C8 125.1(5).

Fig. 4 ORTEP drawing of **6**. Symmetry-equivalent atoms (denoted by an A) are generated by the crystallographic inversion center. Selected bond lengths (A) and angles(°): Ni1–P1 2.226(1), N2–C8 1.404(5); N1A–Ni1–N1 180.0(2), N1A–Ni1–P1A 87.5(1), N1–Ni1–P1A 92.5(1), N1A–Ni1–P1 92.5(1), N1–Ni1–P1 87.5(1), P1A–Ni1–P1 180.00(6), C7–N1–Ni1 148.0(4), C7–N2–C8 126.9(4).

Fig. 5 ORTEP drawing of 8. Selected bond lengths (Å) and angles (°): Pt1–P1 2.309(2), N2–C8 1.435(8); N1–Pt1–P1 87.9(2), C7–N1–Pt1 139.8(5), C7–N2–C8 125.6(6).

 $N-R$ ₂(PEt₃)₂ (R = 2,6-Me₂C₆H₃; M = Ni, Pd, Pt). These complexes are isostructural with one another. The central metals lie on the crystallographic center of symmetry, which explains why these crystals have a *Z* value of 4 instead of 8. The coordination sphere of each metal can be described as a square plane, which contains two *trans*-PEt**3** ligands and two *trans*-carbodiimido $(N=C=N-R)$ ligands. The metal-nitrogen bond lengths are observed in the order Pd > Pt > Ni.

The molecular structure of complex **11** is shown in Fig. 6. The coordination sphere of Pt can be described as a square plane, with two *trans*-PMe₃ ligands, one tetrazolato ligand $(CN₄-2,6 Me₂C₆H₃$), and one carbodiimido ligand (NCN–2,6-Me₂C₆H₃). The equatorial plane, defined by Pt1, P1, P2, N1, and C7, is roughly planar with an average atomic displacement of 0.0893 Å. The tetrazolato ring and its phenyl ring are twisted from each other with a dihedral angle of $64.5(3)$ °.

Reactivity toward acyl halide derivatives

We have investigated the reactions of organic electrophiles with 1 to gain insight into the chemical properties of the complexes and their relationship to several synthetic organic reactions catalyzed by Group 10 metal complexes. Compound **1** rapidly reacts with two equivalents of benzoyl chloride (PhCOCl), phenyl chloroformate (PhOCOCl), and 2-thiophenecarbonyl chloride (C**4**H**3**SCOCl) at room temperature to give organic cyanamides such as $PhCON(CN)-2,6-Me₂C₆H₃$

Fig. 6 ORTEP drawing of **11**. Selected bond lengths (Å) and angles $(^{\circ})$: Pt1–C7 2.005(11), Pt1–N1 2.031(8), Pt1–P1 2.307(2), Pt1–P2 2.316(3), N1–C16 1.17(1), N2–C16 1.23(1), N2–C17 1.39(1), N3–C7 1.34(1), N3–N4 1.40(1), N4–N5 1.30(1), N5–N6 1.38(1), N6–C7 1.35(1), N6–C8 1.43(1); C7–Pt1–N1 175.3(4), C7–Pt1–P1 96.5 (3), N1– Pt1–P1 86.5 (3), C7–Pt1–P2 87.8(3), N1–Pt1–P2 89.6(3), P1–Pt1–P2 172.3(1), C16–N1–Pt1 157.5(8), C16–N2–C17 131.0(9), C7–N3–N4 105.7(9), N5–N4–N3 110.7(7), N4–N5–N6 106.2(8), C7–N6–N5 109.2(8), N3–C7–N6 108.2(9), N3–C7–Pt1 123.0(8), N6–C7–Pt1 128.3(7), N1–C16–N2 168.0(10).

(92%), PhO(CO)N(CN)-2,6-Me**2**C**6**H**3** (85%), and C**4**H**3**SCON- (CN) -2,6-Me₂ C_6H_3 (91%), respectively (eqn. (3)). However, those reactions of **1** carried out with excess CO (1 atm) or iodobenzene did not occur and only resulted in the recovery of the starting compound.

 $R = 2,6-Me₂C₆H₃$ Y = C₆H₅, C₆H₅O, C₄H₃S

The pure organic cyanamides are isolated as white crystalline solids without requiring column chromatography and have been identified by IR and NMR spectroscopy, and elemental analysis. Their IR spectra display strong absorption bands at $2228 - 2242$ cm⁻¹ and 1665–1758 cm⁻¹, due to the characteristic C N and CO groups, respectively. The **¹³**C NMR spectra also confirm the corresponding carbon atoms. Interestingly, we could not observe isomeric linear carbodiimides of the type $Y(CO)N=C=N-R$, which has been further confirmed by X-ray diffraction. Two of the molecular structures of these cyanamides, PhCON(CN)-2,6-Me₂C₆H₃ and C₄H₃SCON(CN)-2,6- $Me₂C₆H₃$, demonstrate the formation of bent cyanamides (Fig. 7 and 8). Although we could not provide conclusive information about the formation of organic cyanamides, we

Fig. 7 ORTEP drawing of PhCON(CN)-2,6-Me₂ C_6H_3 . Selected bond lengths (Å) and angles (\degree): O1–C9 1.203(4), N1–C16 1.350(6), N1–C9 1.417(5), N1–C1 1.464(5), N2–C16 1.146(5); N1–C9–C10 118.4(4), N2–C16–N1 175.6(5).

Fig. 8 ORTEP drawing of $C_4H_3SCON(CN)-2,6-Me_2C_6H_3$. Selected bond lengths (Å) and angles (\degree): O1–C10 1.174(15), N1–C9 1.338(18), N1–C10 1.413(16), N1–C1 1.484(19), N2–C9 1.103(18); N1–C10–C11 121.0(11), N2–C9–N1 173.0(17).

speculate the reaction proceeds by one of two pathways. The first pathway is direct electrophilic abstraction, which begins with the attack of the electrophile (YCOCl) at the distal nitrogen of the carbodiimido ligand. This pathway seems to be sterically favorable and can avoid the uncommon oxidation state of $+4$ arising from the oxidative addition of the electrophile. A second pathway involves equilibrium to give a palladium cyanamide species that subsequently undergoes electrophilic attack at its proximal nitrogen to lead to the product (Scheme 3). Recently, Yamamoto and co-workers reported

the palladium-catalyzed couplings of isocyanides, allyl carbonate, and trimethylsilyl azide to give allyl cyanmides and also proposed the equilibrium between a π -allyl-supported palladium–carbodiimide and a palladium–cyanamide as the intermediate.**²** By the way, our reaction is rapid at room temperature and does not show any spectroscopically identifiable linear carbodiimide, $Y(CO)N=C=N-R$ in the reaction mixture. Therefore, the first pathway seems to be more plausible than the second in our case. The above reactions suggest that our palladium–carbodiimido complexes might act as important intermediates or precursors in the transition-metal-catalyzed organic cyanamide formation and might be utilized in preparing various organic cyanamides.

Although several η^2 (or η^1)-carbodiimido complexes are known,**14–21** useful synthetic routes to bis(carbodiimido) compounds of Group 10 metals with a linear $N=C=N$ fragment (η**¹** -coordinated) are limited. In this work, we have shown that various bis(carbodiimido) complexes of Group 10 metals can be readily prepared by the reactions of Group 10 metal–bis(azido)–phosphine complexes with isocyanides (2,6-dimethylphenyl or 2,6-diethylphenyl isocyanide). Our synthetic strategy is expected to be utilized in preparing other transition-metal–bis(carbodiimido) complexes with a linear $N=C=N$ fragment. In addition, we have first demonstrated a set of crystal structures of bis(carbodiimido) complexes of a Group 10 triad. These complexes are expected to act as carbodiimido-transfer agents in preparing various organic cyanamides.

Experimental

General, materials and measurements

All manipulations of air-sensitive compounds were performed under N₂ or argon with the use of standard Schlenk techniques. Solvents were distilled from Na–benzophenone. The analytical laboratories at Basic Science Institute of Korea and at Kangnung National University carried out the elemental analyses. IR spectra were recorded on a Perkin-Elmer BX spectrophotometer. NMR $(^1H, ^{13}C(^1H)$ and $^{31}P(^1H)$) spectra were obtained on JEOL Lamda 300 MHz spectrometer. Chemical shifts were referenced to internal Me**4**Si and to external 85% H_3PO_4 . Pd(N_3)₂L₂ (L = PMe₃, PEt₃, PMe₂Ph; L₂ = depe, dppp) and $Pt(N_3)$, L_2 ($L = PMe_3$ or PEt_3) were prepared by ligandexchange reactions of $Pd(N_3)$ ₂(tmeda)²² (tmeda = *N,N,N',N'*tetramethylethylenediamine) and $Pt(N_3)$ ₂(COD)²² (COD = cycloocta-1,5-diene) with corresponding tertiary or chelating phosphine ligands. $Ni(N_3)_2L_2$ (L = PMe₃, PEt₃; L₂ = dppe) were prepared by the literature method.**²³** 2,6-Diethylphenyl isocyanide was prepared as described in the literature.**²⁴**

Preparations

Complexes 3–6. To a Schlenk flask containing $Pd(N_3)$ ²-(PMe**2**Ph)**2** (0.321 g, 0.688 mmol) was added THF/CH**2**Cl**²** (10 cm**³** , 3 : 2 v/v ratio) and 2,6-dimethylphenyl isocyanide (0.181 g, 1.38 mmol) in that order. The mixture was heated at $60 °C$ for 5 h, and the initial yellow solution slowly turned a reddish orange. After stirring, the solvent was removed completely, and the resulting residue was solidified with $CH₂Cl₂$ and diethyl ether to give yellow solids. Recrystallization from CH**2**Cl**2**/ hexane gave yellow crystals of $Pd(N=C=N-R)_{2}(PMe_{2}Ph)_{2}$ $(R = 2.6 \text{-} Me_2C_6H_3)$, **3** (0.360 g).

Complexes **4**–**6** were prepared in a similar way to compound **3**.

Complexes 7 and 8. To a Schlenk flask containing $Pt(N_3)_2$ -(PMe**3**)**2** (0.430 g, 0.996 mmol) was added toluene (10 cm**³**) and 2,6-dimethylphenyl isocyanide (0.262 g, 1.99 mmol) in that order. The mixture was heated at 80 $^{\circ}$ C for 24 h, during which time the reaction mixture slowly turned to a colorless solution. After stirring, the solvent was removed completely, and the resulting residue was solidified with diethyl ether and hexane to give a white powder. Recrystallization from CH**2**Cl**2**/hexane gave white crystals of *trans*-Pt(N=C=N–R)₂(PMe₃)₂ (R = 2,6- $Me₂C₆H₃$, 7 (0.338 g).

Complex **8** was analogously prepared.

Similar reactions of $Pt(N_3)_2(PMe_3)_2$ with *tert*-butyl (or cyclohexyl) isocyanide under the conditions described above gave white solids. The isolated solids were identified as *trans*- $Pt[CN_4(R)]_2(PMe_3)$ ₂ (R = *tert*-butyl, cyclohexyl) by comparing their spectral data with those of a sample of the genuine compound.**¹⁰**

Complexes 9. To a Schlenk flask containing $Ni(N_3)$ ₂(PMe₃)₂ (0.309 g, 1.048 mmol) was added CH**2**Cl**2** (9 cm**³**) and 2,6 dimethylphenyl isocyanide (0.275 g, 2.096 mmol) in that order. The initial dark red solution immediately turned dark yellow with the evolution of nitrogen. After stirring for 24 h at room temperature, the solvent was completely evaporated under vacuum, and then the resulting residue was solidified with diethyl ether. The solids were filtered off and washed with diethyl ether $(2 \times 2 \text{ cm}^3)$. Recrystallization from CH₂Cl₂/diethyl ether gave brown crystals of *trans*-Ni $[CN_4(R)](N=C=N-R)$ - $(PMe₃)₂$ (R = 2,6-Me₂C₆H₃), 9 (0.240 g). Thermal treatment of 9 in THF/CH₂Cl₂ (3 : 2 v/v ratio) at 60 °C for 5 h converted to the bis(carbodiimido) complex, $Ni(N=C=N-R)_{2}(PMe_{3})_{2}$ (R = 2,6- $Me₂C₆H₃$, **5** in 96% yield.

Complexes 10–12. To a Schlenk flask containing $Pt(N_3)$ ²- $(PMe₃)₂$ (0.430 g, 0.996 mmol) was added CH₂Cl₂ (4 cm³) and

2,6-dimethylphenyl isocyanide (0.106 g, 0.811 mmol) in that order. The mixture was stirred at room temperature for 3 h, and the solvent was removed. The resulting residue was solidified with diethyl ether and hexane to give a white powder, which was recrystallized from CH**2**Cl**2**/hexane to produce white crystals of *trans*-Pt[$CN_4(R)$]₂(PMe₃)₂ (R = 2,6-Me₂C₆H₃), **10** (0.213 g).

Thermal treatment of 10 in THF/CH₂Cl₂ (3 : 2 v/v ratio) at 60 °C for 5 h gave the carbodiimido complex, $Pt[CN_4(R)](N=C=$ $N-R$)(PMe_3), (11) in 60% yield. Direct reactions of $Pt(N_3)_2L_2$ $(L = PMe₃$ or $PEt₃$) with 2,6-dimethylphenyl isocyanide at 60 °C for 5 h also produce the same complexes, $Pt[CN_4(R)]$ - $(N=C=N-R)(PMe_3)$, ${(L = PMe_3 (11), PEt_3 (12))}$ in, 54 and 92% yield, respectively.

Complexes 13–15. To a Schlenk flask containing $Pd(N_3)$ $(\text{deep})_2$ (0.498 g, 1.26 mmol) was added THF/CH₂Cl₂ (10 cm³, 3 : 2 v/v ratio) and 2,6-dimethylphenyl isocyanide (0.329 g, 2.51 mmol). The mixture was heated at 60 \degree C for 5 h, and the initial yellow solution gradually turned orange. After stirring, the solvent was then removed completely, and the resulting residue was solidified with diethyl ether and hexane to give a yellow powder. Recrystallization from CH₂Cl₂/hexane gave yellow crystals of Pd[N=C=N-(R)]₂(depe) (R = 2,6-Me₂C₆H₃), 13 $(0.397 g)$.

Complexes **14** and **15** were analogously prepared.

Reactions of 1 with acyl chloride derivatives. At room temperature, benzoyl chloride (0.292 g, 2.07 mmol) was added to a CH_2Cl_2 solution (5 cm³) containing complex 1 (0.542 g, 0.987) mmol). The initial orange solution instantly turned to a pale yellow suspension. After stirring for 1 h, the reaction mixture was fully evaporated *in vacuo* to give a pale yellowish residue. The residue was extracted with diethyl ether (30 cm**³**), and the solvent was removed *in vacuo* to give white solids. The products were crystallized from diethyl ether, washed with hexane $(2 \text{ cm}^3 \times 2)$ at 0 °C, and dried *in vacuo* to give white crystals of PhCON(CN)-2,6-Me₂C₆H₃ (0.432 g, 92%). Data for PhCON-(CN)-2,6-Me**2**C**6**H**3**: ν**max**/cm-1 : 2228 (s) and 1714 (s) (Found: C, 77.05; H, 5.72, N, 11.51. C**16**H**14**N**2**O requires C, 76.78; H, 5.64; N, 11.19%); δ _H (300 MHz, CDCl₃ at 25 °C) 2.38 (6H, s, CH₃), 7.16–7.30 (3H, m, C**6**H**3**), 7.53–7.61 (3H, br, C**6**H**5**), and 7.97 (2H, br, C_6H_5); δ_c (75 MHz in CDCl₃ at 25 °C) 17.7 (CH₃), 109.7, 128.7, 129.0 (1C, s, CN), 129.3, 130.2, 130.5, 133.4, 135.9, 167.4 (1C, s, CO). The residual solids were identified as PdCl₂(PMe₃)₂ in 96% yield by comparison of the NMR data with those of an authentic sample.

The analogous reactions with phenyl chloroformate and 2-thiophenecarbonyl chloride also gave organic cyanamides, $PhO(CO)N(CN)-2,6-Me₂C₆H₃ (85%)$ and $C₄H₃SCON(CN)-$ 2,6-Me**2**C**6**H**3** (91%), respectively. Data for PhO(CO)N(CN)- 2,6-Me**2**C**6**H**3**: ν**max**/cm-1 : 2242 (s) and 1758 (s) (Found: C, 72.47; H, 5.35, N, 10.77. C**16**H**14**N**2**O**2** requires C, 72.16; H, 5.30; N, 10.52%); δ _H (300 MHz, CDCl₃ at 25 °C) 2.43 (6H, s, CH₃), 7.17– 7.32 (6H, m, C**6**H**5**), 7.39–7.44 (2H, br, C**6**H**5**); δ**C** (75 MHz in CDCl**3** at 25 C) 17.7 (CH**3**), 107.5, 120.8, 126.8, 129.2, 129.7, 130.1 (1C, s, CN), 130.4, 132.3, 136.1, 150.2 (1C, s, CO). Data for $C_4H_3SCON(CN)$ -2,6-Me₂ C_6H_3 : v_{max}/cm^{-1} : 2235 (s) and 1665 (s) (Found: C, 65.91; H, 4.79, N, 10.40. C**14**H**12**N**2**OS requires C, 65.60; H, 4.72; N, 10.93%); δ**H** (300 MHz, CDCl**3** at -60 C) 2.37 (6H, s, CH**3**), 7.03 (1H, dd, *J* = 4, C**6**H**5**), 7.23–7.33 (3H, m, C_6H_5), 7.58 (2H, dd, $J = 2$, C_4H_3S); δ_c (75 MHz in CDCl**3** at -60 C) 18.1 (CH**3**), 108.1, 127.9, 129.7, 130.1, 131.6, 132.4, 132.9, 133.9, 136.0, 137.4, 161.3 (1C, s, CO). NMR data of C**4**H**3**SCON(CN)-2,6-Me**2**C**6**H**3** at low temperature displayed the presence of a minor conformer, and raising the temperature of the sample resulted in a broad signal.

X-Ray structure determination

All X-ray data were collected with use of a Siemens P4 diffractometer equipped with a Mo X-ray tube and a graphite crystal monochromator, details are summarised in Table 4. The orientation matrix and unit-cell parameters were determined by least-squares analyses of the setting angles of 25–36 reflections in the range of $10.0^{\circ} < 2\theta < 25.0^{\circ}$. Intensity data were corrected for Lorentz and polarization effects. Decay corrections were also made. The intensity data were empirically corrected for absorption with Ψ-scan data. All calculations were carried out with the use of the SHELX-97 programs.**²⁵** Structures were solved by direct methods and refined by full-matrix leastsquares calculations on F^2 values, initially with isotropic and finally anisotropic temperature factors for all non-hydrogen atoms. All hydrogen atoms were generated in ideal positions and refined in a riding mode. The 2,6-dimethylphenyl rings of **1** and the ethyl groups on the phenyl rings of **2** were extremely disordered, and therefore the carbon atoms in these fragments were isotropically refined.

Crystal data for the organic cyanamide, PhCON(CN)-2,6- $Me₂C₆H₃: C₁₆H₁₄N₂O, M = 250.29, orthonombic, space group$ *Pbca*, *a* = 7.570(2), *b* = 15.073(6), *c* = 24.035(6) Å, *V* = 2743(1) \AA^3 , *Z* = 8, *T* = 293 (2) K, $\mu = 0.077$ mm⁻¹, 4034 reflections measured, 2402 unique ($R_{int} = 0.2075$), from which 909 with $I > 2\sigma(I)$ were used in refinements. Final R_1 and wR_2 values were 0.0705 and 0.1356, respectively. No absorption corrections were made. Crystal data for C₄H₃SCON(CN)-2,6-Me₂C₆H₃: $C_{14}H_1$, N₂OS, $M = 256.32$, monoclinic, space group *Pc*, $a =$ 8.085(2), *b* = 11.637(2), *c* = 14.389(3) Å, *V* = 1302.4(5) Å**³** , *Z* = 4, $T = 293$ (2) K, $\mu = 0.237$ mm⁻¹, 2240 reflections measured, 2240 unique ($R_{\text{int}} = 0.0000$), from which 1275 with $I > 2\sigma(I)$ were used in refinements. Final R_1 and wR_2 values were 0.0824 and 0.2218, respectively.

CCDC reference numbers 184849–184855 and 184857.

See http://www.rsc.org/suppdata/dt/b2/b204179k/ for crystallographic data in CIF or other electronic format.

Acknowledgements

This work was supported by a Korea Research Foundation Grant (KRF-2001-015-DP0249).

References

- 1 G. Veneziani, S. Shimada and M. Tanaka, *Organometallics*, 1998, **17**, 2926 and references therein.
- 2 S. Kamijo, T. Jin and Y. Yamamoto, *J. Am. Chem. Soc.*, 2001, **123**, 9453.
- 3 G. Rajca, W. Schwarz and J. Weidlein, *Z. Naturforsch., Teil B*, 1984, **39**, 1219; G. Rajca and J. Weidlein, *Z. Anorg. Allg. Chem.*, 1986, **538**,

36; W. Einholz and W. Haubold, *Z. Naturforsch., Teil B*, 1986, **41**, 1367.

- 4 W. Beck, K. Burger and W. P. Fehlhammer, *Chem. Ber.*, 1971, **104**, 1816.
- 5 K. Burgess, B. F. G. Johnson and J. Lewis, *J. Chem. Soc., Dalton Trans.*, 1983, 1179.
- 6 E. O. Fisher, W. Kleine, U. Schubert and D. Neugebauer, *J. Organomet. Chem.*, 1978, **149**, C40; V. U. Schubert, D. Neugebauer and P. Fridrich, *Acta Crystallogr., Sect. B*, 1978, **34**, 2293.
- 7 R. J. Letcher, W. Zhang, C. Bensimon and R. J. Crutchley, *Inorg. Chim. Acta*, 1993, **210**, 183; W. Zhang, C. Bensimon and R. J. Crutchley, *Inorg. Chem.*, 1993, **32**, 5808; P. Desjardins, G. P. A. Yap and R. J. Crutchley, *Inorg. Chem.*, 1999, **38**, 5901; C. E. B. Evans, D. Ducharme, M. L. Naklickim and R. J. Crutchley, *Inorg. Chem.*, 1995, **34**, 1350; A. R. Rezvanni and R. J. Crutchley, *Inorg. Chem.*, 1994, **33**, 170 and references therein; R. J. Crutchley, R. Hynes and E. J. Gabe, *Inorg. Chem.*, 1990, **29**, 4921.
- 8 B. F. Abrahams, S. J. Egan, B. F. Hoskins and R. Robson, *Chem. Commun.*, 1996, 1099.
- 9 M. Wehlan, R. Thiel, J. Fuchs, W. Beck and W. P. Fehlhammer, *J. Organomet. Chem.*, 2000, **613**, 159.
- 10 Y.-J. Kim, Y.-S. Kwak, Y.-S. Joo and S.-W. Lee, *J. Chem. Soc., Dalton Trans.*, 2002, 144.
- 11 Y.-J. Kim, Y.-S. Kwak and S.-W. Lee, *J. Organomet. Chem.*, 2000, **603**, 152.
- 12 X. Shen, X. Shi, B. Kang, Y. Liu, L. Gu and X. Huang, *J. Coord. Chem.*, 1999, **47**, 1.
- 13 J. E. Huheey, E. A. Keitter, R. L. Keitter, *Inorgnic Chemistry*, Harper Collins, New York, 4th edn., 1993, Appendix, Table E1.
- 14 B. M. Bycroft and J. D. Cotton, *J. Chem. Soc., Dalton Trans.*, 1973, 1867.
- 15 R. A. Anderson and F. W. B. Einstein, *Acta Crystallogr., Sect. B*, 1978, **34**, 271.
- 16 H. Hoberg and J. Korff, *J. Organomet. Chem.*, 1978, **150**, C20.
- 17 M. Pasquali, S. Gambarotta, C. Floriani, A. Chiesi-Valla and C. Guastini, *Inorg. Chem.*, 1981, **20**, 165.
- 18 H. L. M. v. Gaal and J. P. Verlaan, *J. Organomet. Chem.*, 1977, **133**, 93.
- 19 D. S. Glueck, F. J. Holland and R. G. Bergman, *J. Am. Chem. Soc.*, 1989, **111**, 2719.
- 20 H. Werner, G. Hörlin and N. Mahr, *J. Organomet. Chem.*, 1998, **551**, 367; G. Hörlin, N. Mahr and H. Werner, *Organometallics*, 1993, **12**, 1775.
- 21 E. T. Hessell and W. D. Jones, *Organometallics*, 1992, **11**, 1496.
- 22 Y.-J. Kim, J.-C. Choi and K.-H. Park, *Bull. Korean Chem. Soc.*, 1994, **15**, 690.
- 23 K. Bowman and Z. Dori, *Inorg. Chem.*, 1970, **9**, 395.
- 24 H. Ryu, S. Knecht, L. R. Subramanian and M. Hanack, *Synth. Met.*, 1995, **72**, 289.
- 25 G. M. Sheldrick, SHELX-97, University of Göttingen, Germany, 1997.
- 26 L. J. Farrugia, ORTEP-3 for Windows, University of Glasgow, 1997.